

unsigned size_t
was a mistake

by Andrea “6502” Griffini

unsigned size_t was a mistake

unsigned

≠
non-negative

unsigned size_t was a mistake

The difference of two non-negative
numbers always gives a
non-negative result

unsigned size_t was a mistake

The difference of two non-negative
numbers always gives a
non-negative result

NO!! … for example 3 – 4 = -1

unsigned size_t was a mistake

Adding a possibly negative number
to a non-negative number always
gives a non-negative result

unsigned size_t was a mistake

Adding a possibly negative number
to a non-negative number always
gives a non-negative result

NO!! … for example -4 + 3 = -1

unsigned size_t was a mistake

A non-negative number can be
smaller than -1

unsigned size_t was a mistake

A non-negative number can be
smaller than -1

No non-negative number can be
smaller than -1. That is basically the
DEFINITION of non-negative.

unsigned size_t was a mistake

HOWEVER...

unsigned size_t was a mistake

The difference of two unsigned
numbers always gives an
unsigned result

unsigned size_t was a mistake

The difference of two unsigned
numbers always gives an
unsigned result

Yes!! … for example (32 bit)
3 – 4 = 4,294,967,295 = 232-1

unsigned size_t was a mistake

Adding a possibly negative number
to an unsigned number always
gives an unsigned result

unsigned size_t was a mistake

Adding a possibly negative number
to an unsigned number always
gives an unsigned result

YES!! … for example (32 bit)
-4 + 3 = 4,294,967,295 = 232-1

unsigned size_t was a mistake

A unsigned can be smaller than -1

unsigned size_t was a mistake

A unsigned can be smaller than -1

YES!! … for example 4 < -1
 Actually MOST of them are

unsigned size_t was a mistake

But but but…
it's because of “overflow”

unsigned size_t was a mistake

But but but…
it's because of “overflow”

NO!

unsigned size_t was a mistake
Overflow is undefined behavior, and
happens on values too large to be
represented correctly by the platform,
values that correct programs don't use.

The “strange” behavior of unsigned is
instead very well defined and happens
around zero, probably the most
common value used in programming.

unsigned size_t was a mistake

unsigned

≠
non-negative

unsigned size_t was a mistake

unsigned

=
modulo integer

unsigned size_t was a mistake

unsigned

=
modulo integer

(element of /nℤ)

unsigned size_t was a mistake

By The original uploader was Spindled at English Wikipedia
Transferred from en.wikipedia to Commons.

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1380612

https://en.wikipedia.org/wiki/Modular_arithmetic

unsigned size_t was a mistake

unsigned char (8 bit)

unsigned size_t was a mistake

signed char (8 bit)

unsigned size_t was a mistake

Why is wrong using unsigned for size_t?

unsigned size_t was a mistake

Why is wrong using unsigned for size_t?

- size_t was meant to be the “size” of something
- “size” is conceptually a non-negative number
- unsigned is instead a modulo integer

unsigned size_t was a mistake

Why is wrong using unsigned for size_t for
someone that doesn't care about philosophy?

unsigned size_t was a mistake

Why is wrong using unsigned for size_t for
someone that doesn't care about philosophy?

BUGS

unsigned size_t was a mistake

for (int i=0; i<pts.size()-1; i++){
 drawLine(pts[i], pts[i+1]);
}

unsigned size_t was a mistake

for (int i=0; i<pts.size()-1; i++){
 drawLine(pts[i], pts[i+1]);
}

When pts is empty this code is UB
(probably segfault)

unsigned size_t was a mistake

for (int i=0; i<pts.size()-1; i++){
 drawLine(pts[i], pts[i+1]);
}

Using size_t instead of int for
index i would NOT solve the issue.

unsigned size_t was a mistake

for (int i=0; i<pts.size()-1; i++){
 drawLine(pts[i], pts[i+1]);
}

Using size_t instead of int for
index i would NOT solve the issue.

It would just shut up the warning.

unsigned size_t was a mistake

for (int i=0; i<pts.size()-1; i++){
 drawLine(pts[i], pts[i+1]);
}

The problem is pts.size()-1,
 not the index.

The problem is 0-1 = 4294967295

unsigned size_t was a mistake

for (int i=0; i<pts.size()-1; i++){
 drawLine(pts[i], pts[i+1]);
}

A fix could be the use of
…; i+1<pts.size();…

instead of
…; i<pts.size()-1;…

unsigned size_t was a mistake

for (int i=0; i<pts.size()-1; i++){
 drawLine(pts[i], pts[i+1]);
}

When working with unsigned types
A<B-1 is NOT the same as A+1<B
even for very common values like 0.

unsigned size_t was a mistake

for (int i=0,n=pts.size(); i<n-1; i++){
 drawLine(pts[i], pts[i+1]);
}

My personally preferred approach is to
just get rid of unsigned types as soon
as possible, and work with plain int.

unsigned size_t was a mistake

What are unsigned types good for?

A) If you actually need the modular
 arithmetic (e.g. cryptography) and you
 understand the implications

B) If you need to use all the bits explicitly
 (e.g. b7 = (1<<7) = 128, but as value

 is too big for a 8-bit signed char)

unsigned size_t was a mistake

The unsigned integer types are ideal for uses that
treat storage as a bit array. Using an unsigned
instead of an int to gain one more bit to represent
positive integers is almost never a good idea.
Attempts to ensure that some values are positive by
declaring variables unsigned will typically be defeated
by the implicit conversion rules.

Bjarne Stroustrup
”

“

unsigned size_t was a mistake

Using an unsigned type for size_t for
standard containers size was a design mistake.
The price to pay (wrong semantics) was too
high for the little gain (one extra bit).

Unfortunately it cannot be fixed now because
of backward compatibility.

unsigned size_t was a mistake

What can be done is avoid repeating the same mistake
again in the future.

When designing new classes or new API please don't
be fooled by the name into thinking that unsigned
means non-negative: for the C++ language unsigned
means modulo, or member of /nℤ .

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

