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unsigned size_t was a mistake

A non-negative number can be 
smaller than -1

No non-negative number can be 
smaller than -1. That is basically the 
DEFINITION of non-negative.
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The difference of two unsigned 
numbers always gives an
unsigned result

Yes!! … for example (32 bit)
3 – 4 = 4,294,967,295 = 232-1



  

unsigned size_t was a mistake

Adding a possibly negative number 
to an unsigned number always 
gives an unsigned result
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Adding a possibly negative number 
to an unsigned number always 
gives an unsigned result

YES!! … for example (32 bit)
-4 + 3 = 4,294,967,295 = 232-1
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A unsigned can be smaller than -1

YES!! … for example 4 < -1
 Actually MOST of them are
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But but but…
it's because of “overflow”

NO!
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Overflow is undefined behavior, and 
happens on values too large to be 
represented correctly by the platform, 
values that correct programs don't use.

The “strange” behavior of unsigned is 
instead very well defined and happens 
around zero, probably the most 
common value used in programming.
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unsigned

=
modulo integer

(element of /nℤ )
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By The original uploader was Spindled at English Wikipedia
Transferred from en.wikipedia to Commons.

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1380612

https://en.wikipedia.org/wiki/Modular_arithmetic
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signed char (8 bit)
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Why is wrong using unsigned for size_t?

- size_t was meant to be the “size” of something
- “size” is conceptually a non-negative number
- unsigned is instead a modulo integer
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Why is wrong using unsigned for size_t for 
someone that doesn't care about philosophy?
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Why is wrong using unsigned for size_t for 
someone that doesn't care about philosophy?

BUGS
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}
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for (int i=0; i<pts.size()-1; i++){
    drawLine(pts[i], pts[i+1]);
}

When pts is empty this code is UB
(probably segfault)
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}

Using size_t instead of int for 
index i would NOT solve the issue.
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for (int i=0; i<pts.size()-1; i++){
    drawLine(pts[i], pts[i+1]);
}

Using size_t instead of int for 
index i would NOT solve the issue.

It would just shut up the warning.
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for (int i=0; i<pts.size()-1; i++){
    drawLine(pts[i], pts[i+1]);
}

The problem is pts.size()-1,
 not the index.

The problem is 0-1 = 4294967295
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for (int i=0; i<pts.size()-1; i++){
    drawLine(pts[i], pts[i+1]);
}

A fix could be the use of
…; i+1<pts.size();…

instead of
…; i<pts.size()-1;…
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for (int i=0; i<pts.size()-1; i++){
    drawLine(pts[i], pts[i+1]);
}

When working with unsigned types   
A<B-1 is NOT the same as  A+1<B 
even for very common values like 0.
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for (int i=0,n=pts.size(); i<n-1; i++){
    drawLine(pts[i], pts[i+1]);
}

My personally preferred approach is to 
just get rid of unsigned types as soon 
as possible, and work with plain int.
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What are unsigned types good for?

A) If you actually need the modular
     arithmetic (e.g. cryptography) and you
     understand the implications

B) If you need to use all the bits explicitly
     (e.g. b7 = (1<<7) = 128, but as value

     is too big for a 8-bit signed char)
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The unsigned integer types are ideal for uses that 
treat storage as a bit array. Using an unsigned 
instead of an int to gain one more bit to represent 
positive integers is almost never a good idea. 
Attempts to ensure that some values are positive by 
declaring variables unsigned will typically be defeated 
by the implicit conversion rules.

Bjarne Stroustrup
”

“
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Using an unsigned type for size_t for 
standard containers size was a design mistake. 
The price to pay (wrong semantics) was too 
high for the little gain (one extra bit).

Unfortunately it cannot be fixed now because 
of backward compatibility.
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What can be done is avoid repeating the same mistake 
again in the future.

When designing new classes or new API please don't 
be fooled by the name into thinking that unsigned 
means non-negative: for the C++ language unsigned 
means modulo, or member of /nℤ .
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